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Although many children are born with congenital limb malformation, contemporary functional artificial hands are costly and
are not meant to be adapted to growing hand. In this work, we develop a low cost, adaptable and personalizable system of an
artificial prosthetic hand accompanied with hardware and software modules. Our solution consists of (i) a consumer grade
electromyography (EMG) recording hardware, (ii) a mobile companion device empowered by deep learning classification
algorithms, (iii) an cloud component for offloading computations, and (iv) mechanical 3D printed arm operated by the
embedded hardware. We focus on the flexibility of the designed system making it more affordable than the alternatives. We
use 3D printed materials and open-source software thus enabling the community to contribute and improve the system. In
this paper, we describe the proposed system and its components and present the experiments we conducted in order to show
the feasibility and applicability of our approach. Extended experimentation shows that our proposal is energy efficient and
has high accuracy.
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1 INTRODUCTION
It is essential and necessary to restore reliable upper limbs functioning of children born with congenital limb
malformation [24, 42] and young amputees [30]. Although there are many research projects by academia [3, 5, 33]
and products in the market by industry [35] that tackle this challenge, there exists a demand for low-cost adoptable
functional prosthetic hands [12]. Functional prosthesis for children are reasonably comprehensive and have
to be adjusted to constant growth; prices of existing body-powered prosthetic hands range from $ 4,000 to $
20,000 [31] thus bringing financial factor into consideration. Recent advances in 3D printing technology changed
prototyping approaches for individual enthusiasts and research groups and reduced the cost of prosthetic hands
significantly [7, 10].
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(a) Solution overview. (b) 3D printed Prosthesis.

Fig. 2. Overview of the proposed solution (left), main screen of the developed mobile application (middle) and Prosthesis
(right). An EMG recording device (e.g., a MYO band) streams data to the companion device, which is assisted by a cloud
server on classifying user’s intended gesture before commanding the prosthesis to perform the gesture.

Fig. 1. Main screen.

Many projects like e-Nable1 or the Open Hand project2 became possible
due to cost effectiveness and wide adoption of 3D printing. The continuously
increasing computing capabilities of mobile devices combined with their mul-
tiple network interfaces are making it possible to use them for computations
which are usually performed by embedded hardware of functional prosthesis.
Moreover, computationally intensive software modules that may not be able
to execute within a few milliseconds on mobile devices can be executed in
remote servers following the computation offloading paradigm [16, 25, 26].

We develop a low-cost solution, as depicted in Figure 2a, composed of (i) a
consumer grade electromyography (EMG) recording hardware (ii) a mobile
companion, (iii) a cloud classification server, and (iv) a 3D printed artificial
arm with embedded hardware, referenced as Prosthesis. (i) An EMG hardware
collects myoelectric signals in muscles via its sensors and streams them to (ii)
the mobile companion application running on a conventional smartphone.
The mobile companion uses a deep learning classifier to map the received
data to a gesture. Via the developed user interface, as shown in Figure 1, the
user can observe predicted gesture and manage the prosthesis system. One
of the options that are adjustable by user is computational offloading to (iii)
a cloud server or a personal computer. The classification outcome is then
transmitted to (iv) the prosthesis to perform the gesture.
In this paper we focus on the mobile framework which performs recog-

nition of a intended gesture on conventional mobile phone and offloads on
demand intensive deep learning computations. Developed framework allows
to significantly reduce the price of active myoelectric prostheses, while using 3D printed materials and simplistic
mechanical design brings flexibility and opportunity to build hand prostheses for growing children. We build the
hardware prototype of the prosthesis based on custom designed printed circuit board (PCB) to show feasibility of

1http://enablingthefuture.org/
2http://www.openhandproject.org/
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our approach. Aiming to design modular and extensible framework, we discuss multiple gesture sets and several
configurations of the system. Every configuration affects performance of the system in some of the following
aspects: recognition accuracy, power consumption of the mobile companion application, delay and others. We
describe a series of experiments to outline how adjustable parameters affect the mentioned metrics.
The rest of this paper is organised as follows; in Section 2 we discuss background and works related to our

solution. In Section 3 we present in detail the proposed solution. In Section 4 we discuss the conducted experiments
to measure the energy needs, the accuracy and the software delay of our proposal. In Section 5 we discuss the
cost of our proposal and the future work while in Section 6 we conclude the paper.

2 BACKGROUND
Towards new HCI paradigms: Augmented and virtual reality (AR/VR) and wearable technologies, alongside
with human body augmentation and prosthesis challenged the most classical input/output models of human-
computer interaction [11, 28]. Brain-Computer Interfaces (BCIs) as one of many ways to meet this challenge
not only are enabling paralysed people to interact with the world [8] but also are deployed in gaming and
entertainment [1]. Another paradigm for this case is recognition of physical gestures - full body configuration
sensing using ambient light [43] or sound-based recognition projects, such as [29] which utilises off-the-shelf
devices’ speakers and microphones to produce ultrasound for detecting hand gestures within a diverse set of 12
labels with high accuracy of 97% and 7 mm precision. Similarly, without introducing additional hardware, [45]
put WiFi signals into use for hand posture discrimination with 3 cm precision and more than 95% accuracy. Such
solutions despite their advantages in potential applications are sensitive to interference and hard to deploy in
mobile scenarios. The abundance of various sensors in wearable devices brought other ways of gesture inputs.
FinDroidHR project [48] utilised a generic Photoplethysmography (PPG) sensor, which is used in most of the
smartwatches and bands to measure heart rate, to identify gestures. By combining multiple sensors (accelerometer,
gyroscope and magnetometer) from wrist-worn devices authors of [40] made it possible to spot sparse gesture
patterns for lifestyle tracking. Other approaches include the use of magnetic sensing via a passive magnetic ring
to augment smartwatches’ inputs [38].
Deep learning and convolutional neural networks: In recent years machine learning has revolutionised

multiple areas including computer vision, natural language processing and ubiquitous computing [27, 36].
Advanced deep neural networks found their ways into self-driving cars, autonomous flying drones, a variety
of IoT devices and many more. Convolutional neural networks (CNNs) is an example of such a networks. CNN
automatically learns patterns from a given train dataset via multiple iterations, or epochs; learned patterns are
represented as a set of filters or convolutional levels. Typically CNN consists of multiple convolution layers, one
or more fully connected (where every neuron of the previous layer is connected to every neuron of the next
layer) ones and softmax function which used to output the probabilities of recognised labels. CNNs are widely
used in image recognition and in signal processing [20].
It is computationally expensive to train deep learning models due to algorithm specifics and increased size

of datasets. Deep learning paradigm was discussed for several decades, but only recent advances in hardware,
including significant growth of computational capabilities of graphical processing units (GPUs), enabling efficient
parallel execution of algorithms, made a change in the field. Mobile devices are gaining higher processors cores
and powerful GPUs, becoming a suitable platform for deploying trained classifiers. However, it is still inefficient
in terms of time and power consumption to train neural networks on mobile platforms. Thus it is preferable to
offload computationally-hungry software modules to desktop computers or remote servers. The authors of [36],
for example, focus on the applicability of deep learning on mobile augmented reality applications and develop
a mobile framework that performs real-time object detection, either locally on a smartphone or remotely on a
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server. In the same direction, the authors of [37] employ deep learning on edge video analytics and the authors
of [47] implemented a deep learning-based mobile AR system for object recognition and context-aware tracking.

Surface EMG and its applications: Electrical signals emitted by the brain control the muscular activity of
human beings; target muscle contracts in a desired fashion once the signal reaches it. Surface Electromyography
(sEMG) is a non-invasive method to quantitatively measure such signals by estimating the electrical potential
differences between muscle and ground electrodes. EMG measurement and analysis is used for medical, rehabili-
tation and sports purposes, alongside with human-computer interaction and prosthesis control. There exist a
wide variety of EMG recording hardware aimed for different purposes: medical grade like solutions from BTS
Bioengineering3, DelSys4 or MotionLabs5 and consumers and enthusiasts oriented e.g. MYO band or MyoWare6.
Gesture recognition is an essential application of EMG. NinaPro project [5, 33] presented multiple databases
of EMG records using various hardware under different scenarios from able-bodied and amputees patients.
Additionally, authors made their dataset publicly available, thus enabling the community and other research
groups to experiment with it, and to benchmark their classification solutions. The performance of CNNs applied
to pattern recognition in temporal EMG data was studied in a few works up to date [4, 46]. The authors of [46]
experimented with NinaPro EMG Database, successfully identifying ten gestures utilising CNN with a single
convolutional layer. A significant contribution of that study is consideration how EMG signal changes over time,
and how classifiers can be adjusted to the temporal variation of biologically originated signals. Kindred problem
is discussed in [23] authors tackle the problem of individuality in (visual-based) gesture recognition systems.
They propose a method of re-training special CNN in order to adopt in for multiple users. The study described
in [3] pushes the number of recognised gesture labels to 27. Authors explore the dependency of attained accuracy
(reported average accuracy is 90%) on a number of employed EMG electrodes, which reaches 192 units. Combined
with electrical muscle stimulation (EMS), EMG technology can be used to build intuitive and distraction-free
input/output system, as is shown in [17]: notification of different priorities are delivered to user by electrical
stimulus of various strengths, in the meantime user can respond to such notifications stealthily by performing a
particular gesture.

Besides being applied for gesture recognition directly, sEMG employed in other scenarios: [9] aims to identify
the exact finger being used for interacting with touch device (or any surface) and to measure a force applied, thus
providing extra contextual information on HCI interaction. Novel classifier architecture for finger classification
composed of two convolutional layers combined with one fully-connected layer, three stacked LSTM cells and
a softmax layer made it possible to achieve an accuracy of 97.4% over a dataset of 18 participants. Among
applications of this solution, authors mention the possibility of turning any surface into a touch-enabled input
device, advanced text marking and few others.

3 SYSTEM OVERVIEW
In this section we present, in detail, the developed solution as depicted in Figure 3. It is composed of four
components: (i) an EMG recording hardware, (ii) a mobile companion, (iii) a cloud server and (iv) a prototype of
3D printed artificial hand.

Prosthesis is a 3D printed hand with embedded hardware. It can receive information from the mobile companion
via WiFi or Bluetooth and perform gestures. Depending on the design of the prosthesis and its rotation controllers,
the number of the gestures it can perform vary. The mobile companion is a mobile application that can connect
to the prosthesis, the EMG hardware and the cloud servers.

3https://www.btsbioengineering.com/products/freeemg-surface-emg-semg/
4https://www.delsys.com/products/desktop-emg/surface-emg-sensors/
5http://www.motion-labs.com/
6http://www.advancertechnologies.com/
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Fig. 3. Components of the proposed solution.

Depending on the design of the Prosthesis and the
preferred gestures, the user can select, via the set-
tings of the designed application, the number of the
gestures that will be performed. Moreover, the user
can opt to use a cloud server to speed up the classi-
fication time and decrease the battery consumption
of the companion device. A convolutional neural
network deployed in both, mobile device and cloud
server, is responsible for mapping the signals col-
lected by the EMG device to a gesture that needs to
be performed by the Prosthesis. Next, we present in
detail the components of our solution.

3.1 EMG hardware
Human muscles generate signals that can be col-
lected via electrodes applied to the skin and, af-
ter being amplified and processed, to be used to infer user’s desired gesture. The mapping of the col-
lected signals to the user’s gesture is complex and highly dependent on the quality of the collected sig-
nals and the selected classification method. EMG devices are able to collect and amplify the signals gen-
erated by the human muscles and, depending on their processing and networking capabilities, process
them and transmit them to other devices. In the developed prototype we employed the MYO armband
to collect the signals generated by the muscles in the arm. In our solution, the MYO armband is con-
nected to the mobile companion via low energy bluetooth (BLE). It is worth mentioning that our solution
does not depend on MYO armband and can function with other EMG hardware with similar functionality.

3.2 Mobile companion

Fig. 4. Settings screen

A central part of the proposed system is the mobile companion. Given that
our goal is to design a functional prosthesis that is as simple and cheap
as possible, the configuration management and classification functions are
handled by the mobile companion. The developed mobile application, via its
user interface informs the user about the connection to the EMG hardware
and shows the inferred gesture. The five main components are:
1) EMG hardware connection module. This module is responsible for

the connection with the EMG hardware which is performed over Bluetooth
channel. The developed application looks for and connects to the preconfig-
ured MYO band. After discovery and successful establishment of connection
it sends the command to stream raw EMG data. Upon the receive of EMG
datapoints from 1 second time interval are stored in intermediate circular
FIFO queue.
2) Classificationmodule. For better performance the classifier is trained

for every user of the proposed system. The trained classifier is then converted
to mobile model and deployed as application’s asset. Mobile model represents
the weights of the neural network and used by mobile deep learning inter-
preter. It is being invoked every 600 milliseconds (by default configuration,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 102. Publication date: January 2019.



102:6 • Shatilov et. al.

see 4.2.1) to classify most recent EMG data stored in buffer. Invocation result is once stored in a single variable
displayed by graphical user interface and accessible by other components.
3) Offloading component.Mobile companion offers an option of offloading classification routines to external

computational facilities. Once such an intent is received from user, local classifier is disabled. EMG data is then
grouped by time windows, compacted into packets and sent to the configured server. The application anticipates
the recognised gesture in the response’s payload, which is immediately displayed to user and served to the board
controlling the prosthesis. If reply is not received in certain amount of time or is not recognised as a valid one,
mobile companion displays error message and can be switched to the local classifier.
4) Board command server. Data are served to the board that controls prosthesis from a server running in

the mobile application. The command is a string value of recognised a gesture.The server polling interval is an
inner parameter of the board and can be changed for more responsive actuation or longer battery life.
5) Settings manager. Setting screen, as depicted in Figure 4, provides a comprehensive tool for an end-user

to configure the prosthesis system. User can adjust utilized gesture set (discussed in subsection 3.6), opt for
the offloading classification routines, change the address of the classification server and choose the connection
protocol (discussed in 3.3).

3.3 Cloud server
Considering that classification is a computationally expensive task that can drain the battery of the mobile device
very fast (we show that fact in subsection4.2.1), we integrate a cloud server that stores the trained model of the
user and can predict the intended gesture via the collected signals by the EMG hardware. Ideally, the cloud server
is a powerful machine run by 3rd party cloud provider, charity organization or commercial service supplier. We
are considering two types of the communication protocols between mobile companion and offloading server:
based on (i) HTTP and (ii) UDP. Protocol (i) is considered to provide a guarantee of package delivery and preserve
package order with a price of a significant data overhead and higher response times. Additionally it is easier
to deploy, utilize and maintain client-server infrastructure for such a protocol in a heterogeneous ecosystem
of hardware and middleware entities, like the proposed system. UDP-based protocol (ii), on the other hand,
offers a higher communication speed, but packages might be lost and delivery order is not guaranteed. For the
UDP-based protocol, there is an additional pruning routine. Timestamp of the mobile device is being appended to
every EMG data package, and later returned by the server in the response datagram. We are keeping track of
the most up-to-date (in terms of phone’s timestamp) response received, and if the newly received response is
for the older outcoming package, we prune it. Thus, there exists a trade off between speed and reliability, we
explore this protocols and their effect on systems’ performance in subsection 4.2.4. It is worth mentioning, that
although a cloud server is expected to have considerably higher computational capabilities that can execute a
classification query in a few milliseconds, it is also expected to be highly utilised. This means that even though a
classification query will take milliseconds to be executed, it will also be enqueued in a service queue before its
execution. Furthermore, depending on the connection between the mobile companion and the cloud server, any
request may suffer high delay due to the network conditions.

3.4 Prosthesis
The Prosthesis has a mechanical component, a hardware component and an embedded firmware component. The
mechanical component is the 3D printed palm of the Prosthesis and the required motors for the finger movement.
The hardware component is composed of the controllers that receive the commands from the mobile companion
and control the fingers. The embedded firmware component is responsible for the communication between the
mobile companion and the Prosthesis. The prototype of Prosthesis is based on Flexy-hand from Gyrobot 7. The

7https://www.myminifactory.com/object/3d-print-flexy-hand-975

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 102. Publication date: January 2019.

https://www.myminifactory.com/object/3d-print-flexy-hand-975


Using Deep Learning and Mobile Offloading to Control a 3D printed Prosthetic Hand • 102:7

(a) Modified palm model. (b) N20 Geared Motors. (c) PCB controller.

Fig. 5. Palm, geared motors and printed circuit board (PCB) of the prosthesis.

Flexy-hand was originally designed to be actuated by residual limb of the patient, and could only preform the
grab gesture with limited power. Fingers are actuated by strings acting as tendons attached to the tip of individual
fingers and the residual limb, flexing and muscle contraction of the residual limb pulls the strings to form a
grabbing gesture. To convert the original body-powered design into an electric prosthetic hand, the palm section
was modified to fit a control module containing the electronics and the geared motors. Additional channels were
cut from the palm to route string tendons from the control module to the fingers. We present the render of the
modified palm model in Figure 5a.

We employed geared motors, presented in Figure 5b, to control the fingers. Each motor also features a magnetic
rotary incremental encoder that produces pulse signals for keeping track of the motor rotary position. A custom
printed circuit board (PCB) was designed to connect all the electrical components required to receive gesture
commands and control motors in order actuate each finger individually. It is presented in Figure 5c. To receive
wirelessly gesture commands from the mobile companion we added a microcontroller with WiFi and bluetooth
support. Gestures commands are sent to a dedicated motion control processor that controls the position of the five
motors. The firmware polls data from the server hosted on the mobile companion to retrieve the latest gesture
command. It then translates the gesture command into motor rotary positions via a pre-determined look up table
and sends the motor rotary position commands to the motion controller.

3.5 Classifier
For the classification of EMG signals we used convolutional neural networks (CNNs). The developed classifier
allows us to capture certain patterns in fixed size windows of temporal EMG data with minimum amount of
preprocessing and no manual feature selection. Before using the classifier we apply a notch filter to remove
the noise generated by the EMG hardware and electrical network. In all of the experiments we used the data
from intact subjects. Results from [6] justify the usage of EMG data from healthy subjects, that can be used as
proxy measurement for amputees. Given a train set of EMG data from single right handed subjects, we explored
different variants for the classifier’s architecture and tuned its parameters. We measure accuracy of the network
using a fourfold cross validation procedure. We discuss further details regarding the robustness of the classifier
in Section 4.2.3. The designed CNN has six layers, five convolutional and one fully connected (dense) layer, and is
shown in Figure 6. The first convolutional layer of the CNN consists of 25 filters of size [1 × 10], it learns patterns
within a single EMG channel. The second layer captures patterns within two neighboring channels by having 25
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Fig. 6. CNN Architecture of the developed classifier.

filters [2 × 25] and using a longer window. Next, sub-sampling is performed using 2 steps stride while no pooling
is applied. Further levels consist of 50 [10 × 25] filters and 100 [10 × 50] filters respectively. Finally, we add a fifth
convolutional layer of 200 [10 × 100] filters followed by fully connected dense layer of 1024 elements with 0.5
dropout rate. The nodes of the output layer represent the probabilities of the classified gestures.

3.6 Gesture sets
Comprehensive study of active myoelectric prosthesis is presented in [32]. Multiple experts, including clinicians
representing amputees, were surveyed in order to determine what functions active hand prosthesis should have
and what kind of gestures are most helpful for amputees. As the study outlined, myoelectric artificial hands are
preferred to be capable of (i) performing multiple types of grasps (cylindrical, flat (tripod) and lateral), (ii) pointing
index finger for typing and pressing buttons and (iii) detecting the applied force. Another study [44], employed
89 amputees to monitor the impact of amputation on mood, psychological state, life satisfaction, mobility, and
occupational functioning for a 2-years period. One of the findings is that amputation is being associated with is
social isolation, decreased self-esteem and body image problems. Thus, the purpose of active prosthesis might be
extended to (iv) assisting human to human interplay beyond just providing methods of physical interactions
with objects. Considering the objectives (i-iv), we study the following gesture sets:

Gesture set 1. Number gestures from one to four (G1-G4). Beside addressing (iv) social requirement and (ii)
pointing capability, thus gesture set is interesting to study in the context of HCI: when users are presented
a list of several options they can choose, e.g. second item in the list by performing (or intending to perform,
for amputees) the hand gesture for number two.

Gesture set 2, Grasps: cylindrical (G5, G6) and tripod (G7, G8) with two applied pressure levels - firm and
light. This gesture set addresses the requirements (i) and (iii).

Gesture set 3, namely Social, consisting of the following gestures: palm (G9) representing the rested state
of the hand which can also be used for greeting and waving, fist (G10), point identical to (G1), thumbs up
(G11), "peace" sign identical to (G2).

Gesture set 4. Combination of Grasps and Social gesture sets.
Gesture set 5. Combination of Gesture set 3, number gestures and grasps without distinguishing the applied

force, i.e. G1-G4, G5, G7, G9-G11.
Gesture set 6. All of the discussed gestures, G1-G11, see Figure 7.
We evaluate the performance of the classifier for the discussed gesture sets in subsection 4.2.3. It is worth

noting that choice of gestures was also affected by the limitations of the hardware prototype. As far as we aim
for low cost solution employing five motors, gestures like lateral grasps, wrist flexion and extension are not
considered.
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(a) G1, "one" (b) G2, "two" (c) G3, "three" (d) G4, "four"

(e) G5, "cylindrical" (f) G7, "flat grasp" (g) G9, "palm" (h) G10, "fist" (i) G10, "thumb up"

Fig. 7. Set of possible gestures.

4 PERFORMANCE EVALUATION
In order to examine the performance of our solution we propose several practical metrics: power consumption of
the mobile companion, software delay and calssification accuracy. Apart from the Prosthesis, whose hardware
specifications are presented in Section 3.4 and the MYO band, we used a laptop computer and a mobile phone
whose characteristics are presented in Table 1 for the discussed experiments.

4.1 Metrics and system parameters
The performance of the developed mobile system can be characterised by three metrics:

M1) Power consumption (PC): characterizes the amount of energy mobile companion consumes per time
unit. It defines the time that the system can function autonomously.

M2) Software delay (lag) (D): denotes the amount of time that takes to identify user’s intent given the EMG
data stream, and propagate classified gesture across system’s components.

M3) Accuracy (A): depicts how the final result of the prosthesis actuation correlates with actual user’s intent.
This metric is prior to software classifier, yet it can be affected by recording hardware and network delays.

The system has the following four parameters to tune:
P1) Sampling frequency (f ). EMG hardware polling frequency which is measured in Hz. It defines how

many times within one second the EMG signal is being sampled. The frequency varies from 1 (practically
unusable) to 200 Hz (upper bound defined by MYO band). It directly affects the battery life of recording
hardware and mobile phone, and indirectly overall system’s lag and responsiveness.
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Laptop Phone

1) Hardware: 16 GB RAM, Intel(R) Core(TM) i7-7700HQ CPU
@ 2.80 GHz, NVIDIA GeForce GTX 1050

Xiaomi MI5, 4Gb RAM, Snapdragon 820 Quad-
core CPU @ 2.15 GHz, Battery 11.6 Wh

2) OS: Windows 10 Home (64-bit) Android 8.0.0
3) MYO connection: myo-python:1.0.3.[39] com.ncorti:myonnaise:1.0.0 [15]
4) Tensorflow: tensorflow:1.12.0-nightl tensorflow-lite:1.12.0-nightly
5) Deep learning
middleware:

NVIDIA Graphics Driver 417.35, NVIDIA Cuda
9.2, NVIDIA cuDNN v7.4.2

6) Python: Anaconda custom (64-bit)
Table 1. Specifications of the laptop and the mobile phone used on the experiments.

P2) Recording window (w). The length of recording window, i.e. how many recorded samples are being
used in gesture classification. Sufficient for precise classification window length varies from 20 to 200
samples. The length of the window contributes to the system’s responsiveness and defines the complexity
of computations thus affecting the battery life.

P3) Window overlap. On practise sampling frequency doesn’t guarantee the amount of samples delivered
per second. In the proposed system that parameter is represented as an interval (τ ) of performing the
classification of recorded samples.

P4) System configuration (C). Offloading classification routines to cloud component according to experi-
mental results might increase overall system’s lag, but it also improves the time of autonomous functioning
of the system. System configuration includes what kind of phone-to-cloud communication protocol is
utilized (HTTP-based or UDP-based), whether the offloading is enabled and which classification server is
used (personal computer or powerful cloud server).

All introduced metrics depend on system’s parameter thus they can be represented as:
M1) PC(f ,w,τ ,C) - power consumption given the frequency, classification interval and system configuration.
M2) D(f ,w,τ ,C) - lag given the frequency, window length, classification interval and system configuration.
M3) A(w,C) - accuracy given window length and system configuration.
Taken discussed metrics and parameters into consideration, we conducted the experiments which are described

in this section.

4.2 Experiments
We first discuss the results on the system’s power consumption (Section 4.2.1), next the experiments on its delay
(Section 4.2.2) and finally on the classification accuracy (Section 4.2.3). Additionally, we discuss how the choice of
communication protocol between mobile companion and server affects the performance of the proposed system.

4.2.1 Power consumption. In order to estimate how long the proposed system can function autonomously,
we measure the power consumption, in Watts, of the mobile device while it executes the developed application,
which serves as a computational core of the whole system and manages the dataflow within it. The mobile
companion is an essential component of the proposed system, as well as indispensable part of our everyday life,
so it is crucial to report realistic numbers, from which battery life can be derived.

We do not measure the energy consumption of the other components of our proposal, for the following reasons:
(1) The embedded hardware inside the prosthesis is energy efficient; its power supply depends on the size

limitations of the prosthesis.
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(a) Electrical scheme of connected ammeter and voltmeter.

(b) Set up.

Fig. 8. Experimental setup for measuring power consumption of the mobile companion.

(2) The proposed system is aimed to be independent of the type of EMG recording hardware, as long as it is
providing interpretable data, thus its lifetime serves as an external parameter.

Phone batteries are characterised by their capacity Q measured in Watt-hours (Wh). The capacity can be
expressed as Q = P · t , where t is a time interval for which a particular amount of power was applied. In our
experiments, the battery capacity of the employed smartphone equals to 11.6 Wh (Table 1). That means that the
device can deliver 11.6 Watts for 1 hour, 5.8 Watts for 2 hours and so on. In order to determine the power (P )
consumed by mobile phone under specific computational loads, the supply voltage (V ) and current (I ) must be
measured: P = I ·V . The experimental setup for measuring power consumption is shown on the Figure 8.
To measure the current sourced by the battery, the 0.01 Ohm shunt resistor built into the phone for internal

current measurement circuitry was removed and replaced by the multimeter. For the voltage measurement,
the multimeter was connected to the voltage input of the phone. We used an EEVblog 121GW multimeter 8 in
the Volt-Amp (VA) range to acquire voltage and current values, the data is logged at a 1 second interval to an
inserted micro SD card. We performed power measurements in the following seven scenarios, and we present the
measurements in Figure 9a.

Deep idle. The smartphone is locked, screen, Wifi and Bluetooth adapters are turned off, and no active
background task is running. This scenario represents the baseline for minimum power consumption. A
smartphone enters the deep idle state after a certain time interval passes from the time the phone is locked.

Idle scenario represents the case when the phone is unlocked, the screen is active, and no application is
launched. Users activity is limited to casual unpatterned swipes over the home screen. Power consumption
in this scenario should provide a rough idea of how much energy is required for the screen functioning.

Youtube. This scenario stands as an example of intense continuous phone usage - all communication adapters
are turned on, and power saver mode is disabled in order not to discriminate background services. As
Figure 9a shows, this scenario has the highest variance in the energy consumption. To our understanding,
this phenomenon is caused by the changes in the screen’s brightness based on the streamed video.

Local. The scenario when the mobile companion is running, and a local classifier is invoked every (τ ) 600ms
and MYO band is being polled on 200 Hz frequency (f ), is named as “Local”. Considerably, with the chosen
τ and f of a running classifier on the phone while polling MYO on maximum frequency requires the highest
amount of power supplied. Given that is the most energy consuming scenario we further examine it by
changing τ and f . The produced plots are presented in Figures 9b and 9c

8https://www.eevblog.com/product/121gw/
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Fig. 9. Power consumption measurement results, in Watts. Average value depicted in black, stroked area represents intervals
of average ± standard deviation, top and bottom - maximum and minimum values respectively.

Cloud. Once computational offloading is enabled, power consumption decreases roughly by 40% - from 4.09
Watts on average in "Local" to 2.36 Watts in "Cloud" scenario. This experiment depicts the energy needs of
the offloading routines.

Local Efficient. In this scenario we turn off the screen of the mobile device to represent the case where the
companion device is responsible for the function of our solution while it is placed in the user’s pocket. For
the experiments we use f = 200Hz, τ = 600ms , similarly to the local scenario.

Cloud Efficient. Average power consumption when the screen is disabled, and classification routines are
performed by external computational facilities is 8-10% more than "Idle" (on average - 1.4 vs 1.29 Whats).
Given a battery capacity of 11.6 Wh, the mobile companion can function for more than 8 hours; that period
is enough to support the functioning of the prosthesis for the whole day at school.

Additional parameters of the considered scenarios are presented in Table 2. The configuration of other
considered use-cases is similar to “Local”. Our goal is to determine in what degree the system MYO polling
frequency (f ) and classification interval (τ ) affect the power consumption of the Mobile companion under
identical conditions. Clear trends of energy levels alteration can be seen in Figures 9b and 9c. Variation of polling
frequency affects power consumption less significantly than the increase in the time between two consecutive
classifier invocations.
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Name Screen Battery Saver WiFi Bluetooth

Deep idle OFF ON OFF OFF
Idle ON ON OFF OFF
Youtube ON OFF ON ON
Local ON ON ON ON
Cloud ON ON ON ON
Local Efficient OFF ON ON ON
Cloud Efficient OFF ON ON ON
Other scenarios ON ON ON ON
Table 2. Examined scenarios on system’s power consumption.

C1 285.26 ± 10.08 ms

C2 289.96 ± 11.06 ms

C3 93.65 ± 5.46 ms

C4 → 0 ms

R1HTT P 228.73 ± 53.14 ms

R1UDP 13.44 ± 28.90 ms

R3 ≈ 40 ms [13]
Table 3. Latency terms

4.2.2 Software delay. For measuring the software lag of our proposal, we use the following setup: we connected
the mobile companion and a laptop to the same WiFi network of the 2.4Ghz band, hosted as a mobile hotspot
on the laptop. By conducting more than one hundred ping tests using the windows console, we measured a
minimum latency of 16 milliseconds, an average of 87 milliseconds and a maximum of 259 milliseconds. This
means that whenever the mobile companion exchanges a message the laptop, the software lag increases by at
least 16 milliseconds. Considering the system parameters presented in Section 4.1, we decompose the calculation
of the lag into independent sources of delay and we conduct separate measurements. In detail, we employ the
classifier one hundred times to estimate the classification time in four cases: (i) mobile companion, (ii) mobile
companion in low power mode, (iii) laptop (Table 1), (iv) powerful server.

We denote the classification time on the mobile companion by C1, on the mobile companion, when it is in low
power mode, by C2, on the laptop by C3 and on a powerful cloud machine by C4. Table 3 shows the calculated
values for the four cases of classification. The classification time on a powerful cloud server is expected to be
negligible. The classification time on the laptop is lower than one hundred milliseconds on average while on the
mobile device it takes around three times longer. Next, we evaluate delay of the offloading request. We denote by
R1HTT P average delay of HTTP request and by R1UDP average delay of UDP request given that smartphone and
classification server are connected to the same WiFi network. To measure package travel time for both protocols,
we first append smartphone’s timestamps to every generated package. Next, classification server returns classified
gesture followed by the exact same timestamp. Finally, mobile companion determines current time and compares
it with the received timestamp. By R3 we denote typical latency of a cloud server. Given the classification interval
τ and system configuration C , the software delay can be represented as following:

L(τ ,C) = τ +


C1 ≈ 335ms, if the classifier is executed locally,
C3 + R

HTT P
1 ≈ 371ms, if HTTP-based protocol and personal computer are used,

C3 + R
UDP
1 ≈ 156ms, if UDP-based protocol and personal computer are used,

C4 + R3 ≈ 90ms, if cloud server is used.

Here we put τ = 50 milliseconds and take average values for latency terms from Table 3.

4.2.3 Accuracy. We recruited 10 participants (right-handed males) to estimate the classifier’s performance.
Their age ranged from 23 to 34 years old and they did not report any muscular condition or skin allergy. The
average time of train data recording was around 20 minutes for each subject, with a negligibly small amount of
time spent for placing the MYO band at each participant’s upper forearm. Within the experiment, we asked the
participants to perform gestures with the armband on, following the instructions. Three 30 seconds long records
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(a) GS1, Numbers (b) GS2, Grasps (c) GS3, "Social"

(d) GS4 (e) GS5 (f) GS6

Fig. 10. Cumulative confusion matrices for gesture sets, true labels are listed vertically, predicted - horizontally

are done per subject per gesture with maximum sampling frequency: one is used to construct test trials, two
others - to establish train sets. Each record is then divided into 24 separate trials of 200 samples each. The trials
are further trimmed according to the selected time window of a current experiment. We trained the classifier and
ran tests on collected static data.

Classifier training is performed on the laptop and takes 223911.1 ms (approximately 3.8 minutes, averaged on
ten attempts) per single training (not a cross-validation routine). As far as for every new user of the systems
calibration (or learning) is required, this number can be leveraged by usage of cloud servers; additionally, data
collection for this experiment was done on the laptop of Table 1, yet there are no limitations to do it on a
smartphone. The results of the experiments are presented in Table 4.

Evaluation of accuracy of the discussed gesture sets is presented in Figure 10 as cumulative (across all subjects)
confusion matrices and summarized in Table 4. There is a clear trend of deteriorating of accuracy with the
increasing amount of gestures in a gesture set, however the first gesture set (GS1) of number gestures has the
worst accuracy. It can be observed that neighboring classes, e.g. "three" and "four", are being confused with each
other in ∼ 40% of cases, as they are physically close to each other. Another clear anomaly can be detected when
combining Number (GS1) and Grasps (GS2) gesture sets (Figure 10d): tripod grasp is sometimes (∼ 20% of cases)
missclassified as number gesture "two", as far as tripod grasp is a grasp which involves the grip of two fingers
from the top and thumb from the bottom. It worth noting that for multiple participants, accuracy for Grasps
gesture set (GS2), was equal to 100%.
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GS1 GS2 GS3 GS4 GS5 GS6 Average

0.8334 0.9587 0.9207 0.8788 0.8466 0.8545 0.8821
Table 4. Measured accuracy for the discussed gesture sets.

To verify the tuned classifier in a more robust way we have run experiments on the NinaPro database (database
3, [5]) which is widely used for the experiments in EMG area [46][4]. For this experiment, the number of output
nodes of the employed CNN was altered according to the number of gestures represented. Obtained results
(62%±2% across multiple subjects) are aligned with the accuracy of other works on this database [4]. An important
benchmark for the developed classifier is how well it performs with amputees EMG data. We run experiments on
the NinaPro database 3 [5], which provides data from eleven amputees performing 50 different gestures. Same
as in the previous case, results are similar to accuracy reported in prior work [5] - 39% ± 9%. In both cases, the
accuracy is significantly lower than the numbers discussed above because the NinaPro database 3 and 5 contains
EMG data for 50 different gestures and the baseline for classifiers’ performance is below 2% (of a random guess).
This fact additionally backs up our claim that the classifier we develop is not limited to a specific set of gestures
or recording hardware and can be personalised after deployment. More importantly, this shows that the classifier
is capable of recognising intents of amputees.

Metric HTTP UDP

AVG 228.73 13.44

Lost 0% 9%

Pruned 0% 1%

Median 103.5 10.7

AE 0.8821 0.7821
Table 5. Connectivity comparison

This might be considered as another argument in favour of the project’s
independence from EMG recording hardware. In the case of eight EMG
channels, it can be easily observed that accuracy is getting higher using
wider windows.

4.2.4 Connectivity. In this subsection we discuss how the choice of com-
munication protocol between server and mobile companion affects the per-
formance of the system. We use the same classifier in mobile device and
classification server and expect the accuracy to be the same in both devices.
But for the UDP-based protocol, packages might be lost or pruned. In order to
estimate effective rate of successfully classified trials in the deployed system
we introduce a composite metric which we call Effective accuracy (AE ) and define it as:

AE = 1 − ((Pr1 + Pr2) + (1 −A)) = A − Pr1 − Pr2,

where Pr1 is the experimentally determined probability of package loss; Pr2 is the experimentally determined
probability of package pruning; A is the experimentally determined probability of correctly classifying the
user’s gesture intent or, in other words, classification accuracy, that was reported in subsection 4.2.3. Effective
accuracy shows the probability of a single trial NOT being misclassified AND NOT being lost during client-server
communication AND NOT pruned on the client side. For the HTTP-based communication protocol this value
equals just to the accuracy of classifier, as long as in correctly set up environment all HTTP requests are being
served with a proper reply, or, in other words, Pr1 = Pr2 = 0.

We ran experiments for UDP-based protocol to robustly estimate the discussed metrics by analyzing the delay
of 6800 datagrams. In our experiment 629 packets were lost (or deliver after configured timeout) and 53 (< 1%)
were pruned. It it clear that UDP-based based protocol is significantly faster. Thus, loss of 10% packages is a fair
trade, but the percentage of lost packages might increase in different, less ideal conditions. In order to calculate
the effective accuracy we put A equal to average accuracy across gesture sets (0.8821, Table4). The effective
accuracy for the UDP-based protocol is clearly lower than the one for HTTP-based. Connectivity metrics are
summarized in Table 5. It is unknown what degree of accuracy is satisfactory for actual use [32], so we keep the
reliable HTTP-based protocol as one of the options of connectivity for an end-user.
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Project Cost Delay Gestures / Functionality

MANUS [34] N/A 1.0 s Wrist rotation, automatic grasp control
Cyberhand [14] N/A 1.0 s Lateral, cylindrical automatic grasps
OTTO Block
Michelangelo9

$60K-$120K 0.37 s Palm, wrist rotation, Lateral Pinch, Lateral Power Grip, Finger Abduc-
tion/Adduction, Opposition Power Grip, Tripod Pinch

Bebionic 2.010 $11K+ 0.5-1 s Enables amputees to perform everyday activities, such as eating, drinking,
writing, typing, turning a key in a lock and picking up small objects.

i-limb quantum11 $60K-$120K 0.7-0.8s Multiple types of grasps, precision finger control

Table 6. Related projects.

4.3 Analysis
Multiple studies discussed delay in prosthetic devices [18, 21, 32]. Study [18] defines acceptable delay in 100 to
125 ms range by testing prostheses with healthy subjects. On the other hand, study [21] states that users would
opt for more functional, more reliable, but slower prostheses rather than for less functions and a faster system.
This discussion motivates our work to be more flexible providing user the choice between functionality (amount
of gestures), speed (faster UDP-based protocol) or reliability (reliable HTTP-based protocol and more accurate
classifiers with less gestures). Analysing the numbers presented in the current section, it is clear that using
UDP-based protocol with personal computer or UDP-based with cloud server, will provide delays in the discussed
[100, 125] range. On the contrary, scenarios when EMG signal is classified locally on a mobile device, fail to
provide acceptable delays. The benefit of offloading computations is obvious: not only it requires less power (see
Figure 9a) providing longer operational times, but it also reduces delays (see Table 3) making prosthesis system
more responsive.

5 DISCUSSION AND FUTURE WORK
The major contribution of this work is the development of a mobile system that guarantees the operation of
a low-cost prosthetic hand. We use this section to provide more details about the cost of the prosthesis, the
extensibility of our solution to offer more gestures in real time and other future work.

5.1 Cost of Prosthesis
Aiming to minimize the overall cost of the proposed solution we brought up 3D printing technologies, low-cost
and efficient embedded hardware and open-source software. The estimated cost of the prosthetic hand is around
300 $ including printing material for the hull, motors and the board inside. Further cost decrease can be achieved
by simplifying embedded hardware and minimising the amount of components inside the board. Currently, the
cost of our proposal is more than fifty times lower than cheapest prosthetic hand available (see Table 6). It is
worth mentioning that the considered “cost” is the monetary load on the end-users to implement the proposed
system utilizing a conventional smartphone, open-source software and Arduino based hardware.The cost of
commercialization and fees for different clinical approvals is not considered. Few examples of prosthetic hands
currently available on the market are presented in a table below:

9https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/michelangelo-prosthetic-hand/
10https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/bebionic-hand/
11https://www.touchbionics.com/products/active-prostheses/i-limb-quantum
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5.2 Future work
There are multiple potential ways to improve the proposed solution. Many components of the proposed solution
have some potential drawbacks, which can be tackled in the following ways. One of the biggest challenges of
our future work, and work in the field of the functional prosthesis, in general, is improving gesture recognition
accuracy on amputees [6] and conducting broad user studies involving people who actually need prostheses.
Not only there is a need to adjust a set of used gestures according to a specific person’s needs, but to modify the
classification algorithms according to residual limb configuration. Also, there is a need to explore the capabilities
and evaluate the performance of the proposed solution with other types of EMG recording hardware. Even
though the classifier can perform well on the data from NinaPro database, there is a need to conduct hands-on
experiments with other myoelectric recorders, adopt and tune classifiers architecture. The functionality of Mobile
companionmight be extended in order to follow the system’s concepts of flexibility and robustness. Apart from the
already mentioned support of the extended list of hardware EMG recorders, their exit mechanisms for adopting
the classifier to altering nature of biological myoelectric signals [46]. The real-time control of Prosthesis with
arbitrary gestures is limited by the connectivity between the EMG hardware with the mobile companion, the
mobile companion with the cloud server and the mobile companion with the Prosthesis. Moreover, the cloud
component should become a more client-oriented service providing models management and authorisation
solutions, alongside with the opportunity to discover and configure which cloud servers to use: closest with the
lowest latency, most reliable server, or use personally configured server mitigating the potential privacy issue.

One of the most popular research directions on computer networking is tactile Internet [19, 41], where Internet-
connected devices will be able to interact within a few milliseconds and enable haptic communications (i.e., a 3D
printed hand will be able to be controlled from the other side of the world via an Internet connection) [2]. Under
this paradigm, a server responsible for the classification of users’ intended gestures will be able to transmit an
inferred gesture in milliseconds. A second networking solution is edge computing in 5G networks [22]. In this
network setting, a mobile device is expected to be able to access an edge server in less than five milliseconds.
Assuming that the edge server will be able to handle classification tasks in negligible time, the mobile companion
will be able to send inferred gesture to the Prosthesis in a few milliseconds.

6 CONCLUSION
In this paper, we present a mobile system we developed to control a 3D printed prosthetic hand using EMG
hardware that can detect myoelectric currents in muscles. The main contribution of this work is the design
of a highly modular mobile system that is composed of a mobile application assisted by cloud resources. The
solution we developed is based on a deep learning classifier that is implemented using a six-layer neural network.
The trained classifier is stored in a mobile companion that is responsible for collecting the signals generated
by the human muscles and mapping them to gestures that are performed by the prosthetic hand. Due to the
computational complexity of the classifier and the battery limitations of mobile devices, we also employed a
cloud server that can assist the mobile device on the classification task. In order to evaluate our proposal, we
designed three sets of experiments, one for a different metric. In the first set we analysed the power consumption
of our proposal, in the second set we measured the software delay (i.e., the time between the collection of the
signals from the EMG hardware till the performance of a gesture in the prosthetic hand), while in the third set of
experiments we measured the accuracy of the classifier. We evaluate our proposal with 4, 5, 9 and 11 gestures
and two types of communication protocols for the classification offloading (HTTP and UDP). According to the
conducted experiments, our solution, when assisted by the cloud, has the estimated functioning time of more
than eight hours, the software delay of less than a second and average classification accuracy of 88%.
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